skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Honghu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Relaxor ferroelectric (RFE) polymers hold great promise for artificial muscles due to their high actuation strain, high loading stress, and fast response. However, the structural origin underlying their large electrostrictive deformation remains elusive. In this study, we investigate poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)]-based RFE terpolymers, incorporating 1,1-chlorofluoroethylene (CFE) or chlorotrifluoroethylene (CTFE) (the terpolymers are denoted as terP-CFE and terP-CTFE, respectively) as termonomers. Although both terpolymers show similar semicrystalline morphology, drastically different electrostrictive properties are observed. Specifically, the terP-CFE annealed at 100 °C achieves a record-high transverse strain of ~10.6%, whereas 100 °C-annealed terP-CTFE only shows a much lower actuation strain of ~4.2% at the same poling field of 190 MV/m. To elucidate the origin of this difference, time-resolved wide-angle X-ray diffraction, small-angle X-ray scattering, and Fourier transform infrared experiments are performed during in-situ electric poling. An RFE-to-ferroelectric (FE) crystal phase transition is observed for terP-CFE, but is absent for terP-CTFE. Beyond the contribution of the crystalline phase, the oriented amorphous fraction and crystalline defects (e.g., taut-tie molecules) also play significant roles in enhancing electrostriction. This mechanistic insight provides a valuable foundation for the rational design of next-generation RFE polymers with tunable properties through defect-engineering of their semicrystalline structures. 
    more » « less
    Free, publicly-accessible full text available August 18, 2026
  2. Within the linear regime of mechanical and electrical responses, it is commonly accepted that direct and converse piezoelectric coefficients should be the same. However, we observed a consistently higher converse d31 (∼54 pm/V) than the direct d31 (∼42 pC/N) for a quenched, stretched, annealed, and electrically poled poly(vinylidene fluoride-co-trifluorethylene) [P(VDF-TrFE)] 52/48 mol.% sample (abbreviated as coP-52/48QSAP). On the contrary, the direct and converse d31 values were the same for coP-65/35QSAP and coP-55/45QSAP. Small-angle X-ray scattering results showed that coP-52/48QSAP had a higher amount of relaxor-like secondary crystals (SCs) in the oriented amorphous fraction (OAF) (SCOAF) than coP-55/45QSAP and coP-65/35QSAP. To explain the experimental observation, we performed molecular dynamics (MD) simulation of the pure PVDF (without TrFE) to estimate direct and converse piezoelectricity for the PVDF OAF. Based on the MD simulation, the direct d31 had a plateau value around 350 pC/N for the transverse (i.e., along the chain direction) strain up to 1 %, whereas the simulated converse d31 could be lower (for electric field E < 0.8 MV/m), equal (for E = 0.8 MV/m), or higher (for E > 0.8 MV/m) than the direct d31, depending on the poling electric field. From the MD simulation, both mechano-electrostriction and electrostatic interaction were identified in the OAF as the driving force for enhanced piezoelectricity in ferroelectric PVDF. When ferroelectric domains were formed in the OAF by electric poling, the simulated converse d31 became higher than the direct d31. Combining both experimental and MD simulation results, the higher converse d31 than direct d31 for coP-52/48QSAP was understood qualitatively. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. Free, publicly-accessible full text available February 28, 2026
  4. Current research on ferroelectric polymers centers predominantly on poly(vinylidene fluoride) (PVDF)–based fluoropolymers because of their superior performance. However, they are considered “forever chemicals” with environmental concerns. We describe a family of rationally designed fluorine-free ferroelectric polymers, featuring a polyoxypropylene main chain and disulfonyl alkyl side chains with a C3 spacer: −SO2CH2CHRCH2SO2− (R = −H or −CH3). Both experimental and simulation results demonstrate that strong dipole-dipole interactions between neighboring disulfonyl groups induce ferroelectric ordering in the condensed state, which can be tailored by changing the R group: ferroelectric for R = −H or relaxor ferroelectric for R = −CH3. At low electric fields, the relaxor polymer exhibits electroactuation and electrocaloric performance comparable with those of state-of-the-art PVDF-based tetrapolymers. 
    more » « less
    Free, publicly-accessible full text available July 3, 2026
  5. Polymer piezoelectrics hold great potential for energy harvesting and wearable electronics. Efforts have been dedicated to enhancing piezoelectric coefficients and thermostability for several decades, but most of these have not been successful. In this report, we demonstrate a straightforward way to achieve high piezoelectric coefficients and output voltages while maintaining high thermostability at temperatures over 110 °C. Poly(vinylidene fluoride-co-trifluoroethylene) [P(VDF-TrFE)] 80/20 mol.% nanofiber mats (made by electrospinning) with extremely high crystallinity and Curie temperatures were obtained via a two-step annealing process, from which large ferroelectric domains were formed in extended-chain crystals. After corona poling using water, which is a high dielectric constant medium, giant piezoelectricity (apparent d33 = 1045 ± 20 pC/N) and high output voltages (29.9 ± 0.5 V) were achieved. It is found that the dimensional effect induced significant polarization changes, which is the key requirement for piezoelectricity. Our finding in this work paves a way to further improve high-performance polymer piezoelectrics. 
    more » « less
  6. Free, publicly-accessible full text available September 9, 2026
  7. As the feature size of microelectronic circuits is scaling down to nanometer order, the increasing interconnect crosstalk, resistance-capacitance (RC) delay and power consumption can limit the chip performance and reliability. To address these challenges, new low-kdielectric (k < 2) materials need to be developed to replace current silicon dioxide (k = 3.9) or SiCOH, etc. However, existing low-kdielectric materials, such as organosilicate glass or polymeric dielectrics, suffer from poor thermal and mechanical properties. Two-dimensional polymers (2DPs) are considered promising low-kdielectric materials because of their good thermal and mechanical properties, high porosity and designability. Here, we report a chemical-vapor-deposition (CVD) method for growing fluoride rich 2DP-F films on arbitrary substrates. We show that the grown 2DP-F thin films exhibit ultra-low dielectric constant (in plane k = 1.85 and out-of-plane k = 1.82) and remarkable mechanical properties (Young’s modulus > 15 GPa). We also demonstrated the improved performance of monolayer MoS2field-effect-transistors when utilizing 2DP-F thin films as dielectric substrates. 
    more » « less